Heavy metal and HPTLC fingerprint analysis of Siddha drug, *Pun podi* prepared from *Datura metel*

Piratheepkumar R.¹, Amal Wageesha N.D.² and Sivakanesan R.³

Abstract

Pun podi, a potent tropical combination used in Siddha medicine, contains sulfur and Datura metel fruit. Despite its importance, research into the various compositions of *Pun podi* due to diverse preparation methods and seasonal variations remains lacking. To achieve the above objective, the present study was conducted. The Pun podi was prepared in three ways by using Datura metel fruit, collected in three different seasons. The different methods used to prepare three Pun podi and named that different Pun podi as Pun podi 1, 2, and 3. Heavy metal analysis was performed by using Bruker S8-Tiger WD-XRF **High-Performance** analyzer. Thin Laver Chromatography was used to analyze fingerprints on three different samples. The data was then analyzed using a standard statistical approach SPSS to identify significant differences between the samples throughout different seasons. SO₃, K₂O, P₂O₅, Ca, Na₂O, SiO₂ Cl, MoO₃ showed significant differences (p <0.05) between the *Pun podi* prepared by different methods while MgO, PbO, TiO₂, Al₂O₃, and Fe₂O₃ did not show significant differences (p > 0.05) among Pun podi. Statistically significant disparities were observed in the oxide form of microelements present in Pun podi, derived from Datura metel fruit collected during different seasons (p < 0.05). Specifically, other microelements except Fe₂O₃, PbO, and TiO₂ in *Pun podi* showed notable discrepancies (p < 0.05) linked to seasonal variations. Furthermore, Mg, Ca, Si, Pb, Ti, Mo, and Fe demonstrated

insignificant differences among Pun podi prepared through various methods (p > 0.05). However, excluding these microelements, significant distinctions were noted across other elements in Pun *podi* derived from different preparation methods (p < 0.05). Beside P, Fe, Mo and other microelements showed significant differences with respect to seasons (p < 0.05). Pun podi 2 notably contained a higher concentration of both oxidized and elemental microelements compared to other Pun podi variants. Evidently, both seasonal factors and preparation methods exerted discernible influences on the microelement composition of Pun podi. HPTLC results showed, 04 spots in Pun podi 2, 2 spots in Pun podi 1, and one spot in Pun podi 3, at 254 nm. The values obtained from these tests were less than one. **Keywords:** Datura metel. Heavy metals.

Introduction

Microelements, Pun podi

According to WHO estimates, at least 80% of the world's population, mostly in developing nations, still relies on herbal remedies for their basic medical needs. Traditional medicine is used due to its availability, affordability and people's religious beliefs which firmly ingrained. Further, traditional knowledge is an important resource for any nation since it helps the country to advance and transform its society¹. Nature has given us several plants on this planet that are traditionally utilized as medicines by many different ethnic groups. The plants have long

¹Department of Basic Philosophy, Faculty of Siddha Medicine, Trincomalee Campus, Eastern University Sri Lanka.

Campus, Eastern University Sri Lanka. Email: piratheepkumar@yahoo.com

*Correspondence: Piratheepkumar R., Department of Basic Philosophy, Faculty of Siddha Medicine, Trincomalee

²Department of Biochemistry, Faculty of Medicine, Sabaragamuwa University, Sri Lanka. ³Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka.

been used to treat a variety of wounds and disorders affecting the tissues. It seems essential to conduct more scientific research to confirm the therapeutic uses of medicinal plants for treating wounds and the compositions that influence wound healing². In Sri Lanka, three main indigenous medical systems are practiced; Ayurveda, Siddha, and Unani. Plants are fundamental to all three of the indigenous systems. Siddha medicine, whose origins go back to BC 10000–BC 4000, is the most widely practiced medicinal system worldwide³.

Datura metel (D. metel) is a wild plant that thrives in hotter climates and is used in gardens all over the world for both its medicinal and aesthetic qualities. *D. metel* is generally an annual herbaceous plant. It expands to a height of over twelve feet and sprouts many branches⁴. *D. metel* is currently widespread throughout Southeast Asia and probably originated in Northern India. In tropical areas of the world, it is cultivated as a source of the alkaloid, scopolamine⁵.

In Siddha treatment, the *Pun podi*, which contains unripe *D. metal* fruit and sulfur as components, is applied externally. It is applied topically on ulcers, scabies, and itching. In addition to their antiseptic properties, all of the components are said to offer analgesic and anti-microbial properties. *Pun podi* is a Siddha medicinal powder that has historically been applied topically to cure ulcers, and until 1995 there was no scientific evidence to support its usage in wound therapy that has been reported.

Materials and Methods

Collection of the materials

D. metel fruits were collected from seven different places in Sri Lanka and taxonomically identified by the National Herbarium Center, Peradeniya. The fruits were thoroughly washed with running water. The *Pun podi* was prepared after it had been dried and stored in a shady place. The same procedure was carried out three times to create three *Pun podi* spaced three months apart.

Preparation of medicine

Pun podi 1, 2 and 3 were prepared according to the procedure described by Piratheepkumar et al.⁶

Piratheepkumar et. al., Heavy metal analysis

Extraction of Pun podi Cold water extraction

The *Pun podi*, 10 mg, was crushed with 10 ml of distilled water using a motor and pestle and centrifuged for 10 minutes at 10,000 rpm. The supernatant was separated carefully.

Hot water extraction

Pun podi, 10 mg, and 10 ml of distilled water were crushed well using a motor and pestle and placed in a boiling water bath (100°C) for 5 minutes. Then it was cooled and centrifuged for 10 minutes at 10,000 rpm. The supernatant was separated carefully.

HPTLC fingerprint

Preparation of Test solution: About 2.5 g of *Pun podi*, prepared by different methods with methanol for 24 hours, was macerated. It was filtered, evaporated and the dried residue was dissolved in methanol and used for TLC analysis.

Procedure: Silica Gel 60 F_{254} were used as the stationary phase while using the solvent system of Toluene: Ethyl acetate: Diethylamine in a 7:2:1 ratio, as the mobile phase. 20µl of prepared test solutions (T1, T2, T3) were applied on a pre-coated silica gel 60 F_{254} HPTLC plate (E. Merck) of uniform thickness of 0.2mm using Linomat 05 sample applicator. Developed the plate in the solvent system to a distance of 8cm. The plates were observed under UV light at 254nm using CAMAG REPROSTAR-3.

X-Ray Fluorescence (XRF) analysis

X-Ray Fluorescence (XRF) analysis technique was performed based on Mokhena et al., (2016) [7] by using Bruker S8-Tiger WD-XRF analyzer equipped with a Rh-anticathode X-ray tube, five analyzing crystals, different collimators and filters, a flow proportional counter for light elements (Na to V) and a scintillation counter for heavy elements (Cr to Pb).

Results

Table 1 shows the mean value of oxide form of microelements of *Pun podi* prepared by using *D. metel* fruit collected in different seasons. SO₃ was found in high amount among all oxide forms of microelements of the all *Pun podis*. However, it was

high in Pun podi 1 prepared by using D. metel collected in May compared to other Pun podis prepared in different time periods. The large number of oxide form of microelements found in Pun podi 2 among the Pun podis prepared with different methods. MoO₃ was not found in all Pun podi 1 samples prepared in three different periods while TiO₂ was not found in Pun podi 3. PbO was found small amount in Pun podi 1 prepared by using D. metel collected in May only. Other Pun podi 1 samples prepared in January and September were not contained PbO.

Table 2 shows the differences of oxide forms of microelements of the Pun podi prepared by different methods. Among the oxide forms of microelements, SO₃ was found high in all *Pun podi* and it was found high in Pun podi 1 compared to other Pun podis prepared by different methods. SO₃ and K₂O were found in high amount among the all-oxide forms of microelements and it was high in Pun podi 2 compared to other Pun podi.

Table 3 shows the presence of elemental forms of microelements of Pun podi prepared by using D. metel fruit collected in different seasons at three months' interval.

Elemental sulfur was found in high amount among the microelements of all Pun podis. However, it was high in Pun podi 1 prepared by using D. metel collected in January compared to other Pun podis prepared in different periods. The large number of microelements found in Pun podi 2 among the Pun podis prepared with different methods by using D. metel collected in different seasons. MoO3 was not found in Pun podi 1 & 2 prepared in three different periods while TiO₂ and PbO were not found in Pun podi 3 and 1 respectively.

Referring to table 4, the elemental sulfur was found in high amount in Pun podi 1 among the Pun podis prepared in different methods. Except elemental sulfur, K was observerd in high amount in Pun podi 2.

Table 1: The mean differences of oxide form of microelements of Pun podi prepared by using D. metel fruit collected in different seasons

Sample	Season		SO_3	K20	P_2O_5	MgO	CaO	Na ₂ O ₃	SiO ₂	CI	Al ₂ O ₃	Fe ₂ O ₃	M0O3	PbO	TiO ₂
	Jan	Mean	87.80	1.25	0.20	1.63	1.27	1.24	3.10	1.36	0.56	0.03	0	0	0.03
Pun	0	SD	1.94	0.06	0.02	0.10	0.03	0.09	0.12	0.07	0.07	0.01	0	0	0.02
podi	May	Mean	90.81	1.35	0.35	1.63	1.37	1.18	3.58	1.92	0.85	0.04	0	0.01	0.01
1 1		SD	1.62	0.05	0.03	0.10	0.04	0.04	0.14	0.05	0.05	0.02	0	0.01	0.01
1	Sep	Mean	90.63	1.26	0.25	1.91	1.20	1.28	3.27	1.32	0.70	0.04	0	0	0.02
	Sep	SD	0.61	0.05	0.02	0.10	0.07	0.04	0.06	0.02	0.04	0.03	0	0	0.01
Pun	Jan	Mean	46.53	37.18	6.14	4.35	3.01	0.55	1.13	4.72	0.40	0.05	0.01	0.01	0.47
podi -	Jun	SD	2.84	2.07	0.06	0.40	0.41	0.10	0.05	0.08	0.01	0.01	0.01	0.01	0.15
2	May	Mean	47.64	40.38	6.09	4.44	2.94	0.61	1.05	4.92	0.52	0.05	0.02	0.01	0.40
2		SD	1.13	0.95	0.09	0.41	0.09	0.09	0.04	0.10	0.03	0.02	0.01	0.01	0.10
	Sep	Mean	45.76	33.64	6.53	4.15	2.89	0.49	1.11	4.24	0.33	0.04	0.02	0.02	0.37
	Sep	SD	2.21	1.82	0.19	0.06	0.19	0.04	0.04	0.33	0.03	0.01	0.01	0.01	0.06
Pun	Jan	Mean	70.95	23.04	2.99	1.67	1.58	0.66	0.49	0.27	0.17	0.03	0.02	0.02	0
	Jun	SD	0.38	1.58	0.14	0.21	0.12	0.06	0.05	0.06	0.12	0.02	0.01	0.01	0
podi 3	Man	Mean	73.12	21.86	2.49	1.78	1.55	0.71	0.58	0.37	0.27	0.02	0.02	0.02	0
3	May	SD	3.35	0.90	0.14	0.36	0.17	0.10	0.04	0.06	0.12	0.01	0.01	0.01	0
	C are	Mean	72.21	25.38	2.90	2.09	1.51	0.63	0.70	0.37	0.30	0.04	0.02	0.01	0
	Sep	SD	5.06	0.66	0.10	0.07	0.08	0.05	0.04	0.25	0.26	0.03	0.01	0.01	0
Piratheep	pkumar et. al.,	Heavy	metal a	nalysis					S	SLJIM	2024;	09 (02	2): 884	- 896	

3

SD

3.18

1.83

0.26

0.28

0.12

Method		SO_3	K_2O	P_2O_5	MgO	CaO	Na ₂ O	SiO ₂	C	Al ₂ O ₃	Fe ₂ O ₃	M0O3	PbO	TiO ₂
1	Mean	89.74	1.29	0.27	1.72	1.28	1.23	3.32	1.53	0.70	0.04	0.00	0.00	0.02
T	SD	1.96	0.06	0.07	0.16	0.09	0.07	0.23	0.29	0.13	0.02	0.00	0.00	0.01
2	Mean	46.64	37.07	6.25	4.31	2.94	0.55	1.10	4.63	0.42	0.04	0.02	0.01	0.41
4	SD	2.06	3.27	0.23	0.32	0.24	0.09	0.05	0.35	0.09	0.01	0.01	0.01	0.11
2	Mean	72.09	23.42	2.79	1.85	1.55	0.66	0.59	0.33	0.24	0.03	0.02	0.02	0.00

Table 2: The differences of oxide form of microelements between the Pun podi prepared by different methods

Table 3: The mean differences of elemental form of microelements of *Pun podi* prepared by using *D. metel* collected in different seasons . .

0.07

0.10

0.14

0.17

0.02

0.01

0.01

0.00

													Μ		
	Season		S	K	Р	Mg	Ca	Na	Si	С	Al	Fe	0	Pb	Ti
	Jan	Mean	92.1	1.05	0.16	1	0.96	0.83	1.56	1.31	0.3	0.01	0	0	0.02
		SD	0.9	0.03	0.11	0.07	0.04	0.07	0.05	0.04	0.01	0.00	0	0	0
<i>.</i> -		Mean	89.3												
Pun podi I	May		3	1.00	0.63	1.03	1.04	1.00	1.74	1.23	0.24	0.04	0	0	0.02
l un	-	SD	2.95	0.06	0.20	0.03	0.06	0.08	0.06	0.10	0.02	0.02	0	0	0.0
Ĩ,		Mean	90.7												
	Sept		3	1.05	0.13	1.05	1.13	0.91	1.49	1.15	0.31	0.01	0	0	0.0
	-	SD	2.36	0.03	0.05	0.05	0.06	0.02	0.07	0.05	0.02	0.00	0	0	0.0
	Jan	Mean	59.1												
_	Jan		8	30.9	2.76	2.41	1.92	0.31	0.37	4.63	0.17	0.03	0	0.01	0.0
		SD	2.29	0.38	0.12	0.04	0.04	0.02	0.28	0.28	0.05	0.01	0	0.00	0.0
7 10		Mean	52.0												
ĎŎ	May		8	36.5	3.01	2.81	2.06	0.31	0.47	5.23	0.22	0.03	0	0.03	0.0
run poat 2	-	SD	2.81	3.96	0.10	0.1	0.06	0.04	0.07	0.41	0.03	0.01	0	0.01	0
		Mean	63.0												
	Sept		8	30.4	2.66	2.43	1.80	0.42	0.43	5.32	0.23	0.01	0	0.02	0.0
		SD	3.05	0.43	0.06	0.06	0.04	0.04	0.05	0.30	0.06	0.00	0	0.00	0.0
	Jan	Mean	77.1										0.		
_	Jan		6	17.7	1.25	0.96	1.13	0.48	0.24	0.26	0.05	0.01	01	0.01	0
		SD											0.		
` D-			0.31	0.73	0.02	0.03	0.04	0.03	0.05	0.04	0.01	0.00	00	0.00	0
aı.		Mean	80.1	• • •									0.		
Pun podi 3	May		0	20.0	1.36	1.06	0.99	0.51	0.39	0.21	0.08	0.01	07	0.02	0
tn		SD	0.95	0.04	0.06	0.07	0.02	0.06	0.01	0.02	0.01	0.00	0.	0.01	0
Ľ.		Maari	0.85	0.94	0.06	0.07	0.02	0.06	0.01	0.03	0.01	0.00	00	0.01	0
		Mean	78.8 9	19.4	1.27	1.02	1.1	0.53	0.4	0.32	0.03	0.03	0. 01	0.01	0
	Sept	SD	,	17.4	1.41	1.02	1.1	0.55	U.T	0.52	0.05	0.05	0.	0.01	U
		50	2.34	1.41	0.06	0.11	0.03	0.06	0.04	0.07	0.01	0.01	0.	0.00	0
			2.3 f	1.11	0.00	0.11	0.05	0.00	0.0 r	0.07	0.01	0.01	00	0.00	0

Method		S	K	Р	Mg	Ca	Na	Si	С	Al	Fe	Мо	Pb	Ti
1	Mean	90.72	1.04	0.31	1.03	1.05	0.92	1.60	1.23	0.28	0.02	0.00	0.00	0.02
	SD	2.28	0.05	0.27	0.06	0.09	0.09	0.13	0.09	0.04	0.02	0.00	0.00	0.01
2	Mean	58.12	32.63	2.81	2.55	1.93	0.35	0.43	5.07	0.21	0.03	0.00	0.02	0.02
	SD	5.38	3.57	0.18	0.20	0.12	0.07	0.15	0.44	0.05	0.01	0.00	0.00	0.01
3	Mean	78.72	19.09	1.29	1.02	1.07	0.51	0.35	0.27	0.06	0.02	0.04	0.02	0.00
	SD	1.79	1.39	0.07	0.08	0.07	0.05	0.08	0.07	0.03	0.01	0.03	0.00	0.00

Table 4: The differences of elemental form of microelements of Pun podi prepared by different methods

HPTLC fingerprinting profile

HPTLC results showed (Figure 1 and 2) (Table 5), 04 spots in Pun podi 2, 2 spots in Pun podi 1, and one spot in Pun podi 3, at 254 nm.

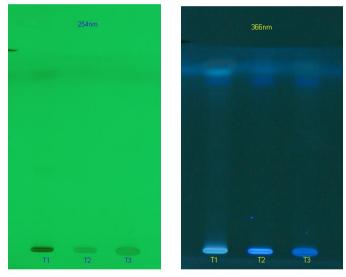


Figure 1: HPTLC plate of *Pun podi* prepared by different methods

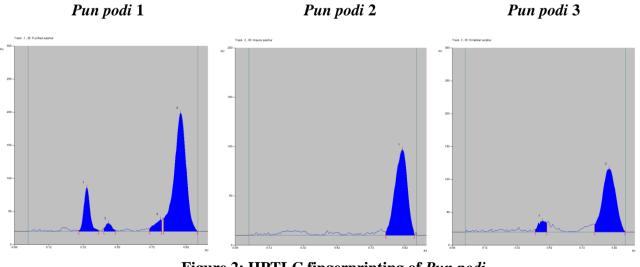


Figure 2: HPTLC fingerprinting of Pun podi

Piratheepkumar et. al., Heavy metal analysis

SLJIM 2024; 09 (02): 884 - 896

G	Deel	Start	Start	Max	Max	Height	End	End		Area
Sample	Peak	Rf	Height	rf	Height	%	Rf	Height	Area	%
Pun	1	0.43	3.8	0.48	16.9	14.96	0.50	13.7	596.4	9.44
podi 1	2	0.80	11.6	0.89	96.0	85.04	0.99	1.3	5718.9	90.5 6
	1	0.30	1.7	0.34	66.2	24.02	0.41	1.6	1672.2	14.6 3
Pun	2	0.44	5.1	0.47	12.2	4.42	0.51	1.7	326.0	2.85
podi 2	3	0.71	3.8	0.77	18.3	6.65	0.78	15.4	525.3	4.60
	4	0.79	19.9	0.89	179.0	64.91	0.99	0.1	8906.3	77.9
Pun podi 3	1	0.81	3.5	0.91	86.8	100.00	0.98	0.5	4546.0	100

Table 5: Peak list of Toluene: Ethyl acetate: Diethylamine extract of Pun podi at UV =254 nm

Discussion

The season had an impact on the amounts of P, Na, and Fe accumulated in the plants⁸. In winter (December to February) more P and Na have accumulated, while the summer-autumn (March-May, and October-November) and winter periods showing the highest amounts of Fe accumulation. Season did not affect the accumulation of N. K. Ca. Mg, Zn, and Cu according to a recent study⁸. According to the present study, the Pun podi showed high Na in May (summer) $(1.0\% \pm 0.08\%)$ compared to other seasons (Table 3). It showed a significant difference (p <0.05) between Pun podi prepared by D. metel collected in different seasons (Table 7). However, the accumulation of P and Fe was insignificant in Pun podi prepared in different seasons (Table 9). Accumulation of K, Ca, and Mg was significant (p <0.05) in the Pun podi prepared by using D. metel collected in different seasons (Table 9).

In wound healing, Iron is known for its oxidative role in hemostasis, in which ferrous iron is released from hemoglobin which acts to promote blood clotting⁹ and it's an important component of many antioxidant processes^{10,11}. Certain enzymes need iron to get activate and stimulate angiogenesis during wound healing¹². Iron is a component or activator of enzymes which important in several steps of the healing process. It is also important in anti-inflamma-tory therapy¹³. The presence of Fe, in both elemental and oxide forms, in *Pun podi* was observed prepared by using *D. metel* collected in different seasons (Table 1 and 3). There were insignificant differences (p > 0.05) in the amount of Fe present in both elemental and oxide forms between the *Pun podi* prepared by different methods (Table 6 and 7). It was implied that there were no between the presence of iron and the methods of preparation of *Pun podi*. However, significant changes (p < 0.05) were observed in the presence of Fe in both elemental and oxide forms among the *Pun podi* prepared in three different seasons (Table 8 and 9).

Soft tissue and magnesium ions (Mg^{2+}) are tightly related to wound healing. According to Yang et al., (2023) magnesium ions can also encourage angiogenesis¹⁴. According to Razzaghi et al., (2018)¹⁵ 12-week treatment with Mg²⁺, significantly improved wound healing of the individuals with diabetic foot ulcers. It has anti-inflammatory action also which is essential in wound healing¹⁵. In the present study, all *Pun podi* prepared by different methods showed the presence of Mg in both elemental and oxide forms (Table 2 and 4). Above studies emphasize the importance of the literature from where the drug has been selected to determine the effectiveness for wound healing. Coger et al., (2019)¹⁶ stated that the concentration of iron and magnesium should be

			Pa	ired Diffe	rences				
	-			Std.	95% Confider	nce Interval		16	Sig. (2-
		Mean	SD	Error	of the Dif	ference	t	df	tailed)
				Mean	Lower	Upper			
Pair 1	1SO3 - 2SO3	43.100	1.8057	1.0425	38.61422	47.58585	41.340	2	.001
Pair 2	1SO3 - 3SO3	17.611	.73150	.42233	15.79400	19.42827	41.700	2	.001
Pair 3	2SO3 - 3SO3	-25.48	1.0767	.62165	-28.1636	-22.81415	-41.002	2	.001
Pair 4	2K ₂ O - 2K ₂ O	-35.77	3.3339	1.9248	-44.0598	-27.49572	-18.587	2	.003
Pair 5	1K ₂ O - 3K ₂ O	-22.13	1.8270	1.0548	-26.6752	-17.59813	-20.986	2	.002
Pair 6	2K ₂ O - 3K ₂ O	13.641	5.1512	2.9740	.84478	26.43742	4.587	2	.044
Pair 7	1P2O5 - 2P2O5	-5.989	.26570	.15340	-6.64971	-5.32962	-39.045	2	.001
Pair 8	1P2O5 - 3P2O5	-2.526	.33970	.19613	-3.37010	-1.68236	-12.881	2	.006
Pair 9	$2P_2O_5 - 3P_2O_5$	3.4634	.26871	.15514	2.79592	4.13094	22.325	2	.002
Pair 10	1MgO - 2MgO	-2.592	.30574	.17652	-3.35169	-1.83271	-14.685	2	.005
Pair 11	1MgO - 3MgO	1233	.07621	.04400	31264	.06597	-2.803	2	.107
Pair 12	2MgO - 3MgO	2.4688	.35142	.20289	1.59588	3.34185	12.168	2	.007
Pair 13	1CaO - 2CaO	-1.664	.08754	.05054	-1.88170	-1.44677	-32.928	2	.001
Pair 14	1CaO - 3CaO	2631	.07518	.04340	44988	07639	-6.063	2	.026
Pair 15	2CaO - 3CaO	1.4011	.03145	.01816	1.32296	1.47924	77.151	2	.000
Pair 16	1Na ₂ O - 2Na ₂ O	.68553	.11007	.06355	.41211	.95896	10.788	2	.008
Pair 17	1Na ₂ O - 3Na ₂ O	.56830	.08799	.05080	.34972	.78688	11.187	2	.008
Pair 18	2Na2O - 3Na2O	1172	.02532	.01462	18012	05434	-8.021	2	.015
Pair 19	1SiO₂ - 2SiO₂	2.2211	.28444	.16422	1.51451	2.92769	13.525	2	.005
Pair 20	1SiO ₂ - 3SiO ₂	2.7299	.23756	.13715	2.13984	3.32009	19.904	2	.003
Pair 21	2SiO ₂ - 3SiO ₂	.50887	.12065	.06966	.20916	.80857	7.305	2	.018
Pair 22	1Cl - 2Cl	-3.095	.23543	.13593	-3.68028	-2.51059	-22.773	2	.002
Pair 23	1Cl - 3Cl	1.2010	.31261	.18048	.42451	1.97762	6.655	2	.022
Pair 24	2Cl - 3Cl	4.2965	.36709	.21194	3.38461	5.20839	20.273	2	.002
Pair 25	1Al ₂ O ₃ - 2Al ₂ O ₃	.28667	.11214	.06475	.00809	.56525	4.428	2	.047
Pair 26	1Al2O3 - 3Al2O3	.45887	.10781	.06225	.19104	.72669	7.372	2	.018
Pair 27	2Al ₂ O ₃ - 3Al ₂ O ₃	.17220	.12654	.07306	14215	.48655	2.357	2	.143
Pair 28	1Fe ₂ O ₃ - 2Fe ₂ O ₃	.18910	.15586	.08999	19808	.57628	2.101	2	.170
Pair 29	1Fe ₂ O ₃ - 3Fe ₂ O ₃	.19356	.15738	.09086	19740	.58451	2.130	2	.167
Pair 30	2Fe ₂ O ₃ - 3Fe ₂ O ₃	.00446	.00772	.00446	01472	.02363	1.000	2	.423
Pair 34	1PbO - 2PbO	0111	.00697	.00402	02840	.00620	-2.760	2	.110
Pair 35	1PbO - 3PbO	0133	.00335	.00193	02166	00501	-6.893	2	.020
Pair 36	2PbO - 3PbO	0022	.00515	.00297	01503	.01056	751	2	.531
Pair 37	1TiO ₂ - 2TiO ₂	2400	.13123	.07577	56604	.08597	-3.168	2	.087
Pair 38	1TiO ₂ - 3TiO ₂	.17110	.15989	.09231	22609	.56829	1.853	2	.205
Pair 39	2TiO ₂ - 3TiO ₂	.41113	.05092	.02940	.28464	.53763	13.984	2	.005

Table 6: Statistical difference of oxide form of microelements between the Pun podi prepared in different methods

Table 7: Statistical difference of microelements between the Pun podi prepared in different methods

			P	aired Diffe	erences				
	_			Std.	95% Confidence	e Interval of	t	df	Sig. (2-
		Mean	SD	Error	the Diffe	rence	L	ui	tailed)
				Mean	Lower	Upper			
Pair 1	1S - 2S	32.6066	4.8043	2.77378	20.67204	44.54123	11.755	2	.007
Pair 2	2 S - 3 S	12.0022	2.8586	1.65041	4.90104	19.10336	7.272	2	.018
Pair 3	2 S - 3 S	-20.6044	6.5096	3.75833	-36.7752	-4.43365	-5.482	2	.032
Pair 4	1K - 2K	-31.5882	3.4348	1.98312	-40.1208	-23.05552	-15.92	2	.004
Pair 5	1K - 3K	-18.0526	1.2248	.70715	-21.0952	-15.01000	-25.52	2	.002
Pair 6	2K - 3K	13.5355	2.7552	1.59076	6.69107	20.38006	8.509	2	.014
Pair 7	1P - 2P	-2.50333	.11240	.06489	-2.78255	-2.22412	-38.57	2	.001
Pair 8	1P - 2P	98223	.22290	.12869	-1.53596	42851	-7.632	2	.017
Pair 9	2P - 3P	1.52110	.13006	.07509	1.19802	1.84418	20.258	2	.002
Pair 10	1Mg - 2Mg	-1.52333	.22279	.12863	-2.07676	96990	-11.84	2	.007
Pair 11	1Mg - 3Mg	.00967	.04016	.02318	09009	.10942	.417	2	.717
Pair 12	2Mg - 3Mg	1.53300	.18271	.10549	1.07913	1.98687	14.533	2	.005
Pair 13	1Ca - 2Ca	88107	.18842	.10878	-1.34913	41301	-8.099	2	.015
Pair 14	1Ca - 3Ca	02443	.12055	.06960	32389	.27502	351	2	.759
Pair 15	2Ca - 3Ca	.85663	.19296	.11141	.37730	1.33597	7.689	2	.016
Pair 16	1Na - 2Na	.56557	.10961	.06328	.29328	.83786	8.937	2	.012
Pair 17	2Na - 3Na	.40443	.06880	.03972	.23352	.57535	10.181	2	.010
Pair 18	1Na - 3Na	16113	.04859	.02805	28184	04043	-5.744	2	.029
Pair 19	1Si - 2Si	1.17123	.10557	.06095	.90899	1.43347	19.217	2	.003
Pair 20	1Si - 3Si	1.25111	.14072	.08125	.90153	1.60069	15.399	2	.004
Pair 21	2Si - 3Si	.07988	.04983	.02877	04391	.20366	2.776	2	.109
Pair 22	1C - 2C	-3.83100	.45316	.26163	-4.95671	-2.70529	-14.64	2	.005
Pair 23	1C - 3C	.96780	.11475	.06625	.68274	1.25286	14.608	2	.005
Pair 24	2C - 3C	4.79880	.37465	.21630	3.86812	5.72948	22.185	2	.002
Pair 25	1Al - 2Al	.07443	.05501	.03176	06222	.21108	2.344	2	.144
Pair 26	1Al - 3Al	.22443	.06302	.03639	.06788	.38099	6.168	2	.025
Pair 27	2Al - 3Al	.15000	.04409	.02546	.04048	.25952	5.893	2	.028
Pair 28	1Fe - 2Fe	00323	.01315	.00759	03590	.02944	426	2	.712
Pair 29	1Fe - 3Fe	.00446	.02172	.01254	04950	.05841	.355	2	.756
Pair 30	2Fe - 3Fe	.00769	.01824	.01053	03762	.05300	.730	2	.541
Pair 32	1Mo - 3Mo	03557	.03566	.02059	12416	.05303	-1.727	2	.226
Pair 33	2Мо - ЗМо	03557	.03566	.02059	12416	.05303	-1.727	2	.226
Pair 34	1Pb - 2Pb	02333	.00665	.00384	03985	00681	-6.077	2	.026
Pair 35	1Pb - 3_Pb	01667	.00335	.00193	02499	00834	-8.617	2	.013
Pair 36	2Pb - 3Pb	.00667	.00330	.00191	00153	.01487	3.499	2	.073
Pair 37	1Ti - 2Ti	.00667	.01155	.00667	02202	.03535	1.000	2	.423
Pair 38	1Ti - 3Ti	.02443	.00768	.00443	.00536	.04351	5.511	2	.031
Pair 39	2Ti - 3Ti	.01777	.00387	.00223	.00816	.02738	7.955	2	.015

Table 8: Statistical difference of oxide form of microelements between the *Pun podi* prepared in different seasons

			One-Sam	ple Test		
	t	Df	Sig. (2- tailed)	Mean Difference	95% Confidence of the Diffe	
			taneu)	Difference	Lower	Upper
1SO ₃	92.025	2	.000	89.74447	85.5484	93.9405
2SO ₃	85.204	2	.000	46.64443	44.2890	48.9999
3SO ₃	114.096	2	.000	72.13333	69.4131	74.8535
1K ₂ O	43.494	2	.001	1.28777	1.1604	1.4152
2K ₂ O	19.024	2	.003	37.06557	28.6824	45.4487
3K ₂ O	22.651	2	.002	23.42447	18.9748	27.8741
$1P_2O_5$	6.372	2	.024	.26777	.0870	.4486
$2P_2O_5$	45.714	2	.000	6.25743	5.6685	6.8464
$3P_2O_5$	18.062	2	.003	2.79400	2.1284	3.4596
1MgO	18.673	2	.003	1.72223	1.3254	2.1191
2MgO	49.869	2	.000	4.31443	3.9422	4.6867
3MgO	14.744	2	.005	1.84557	1.3070	2.3842
1CaO	25.607	2	.002	1.28353	1.0679	1.4992
2CaO	82.329	2	.000	2.94777	2.7937	3.1018
3CaO	84.160	2	.000	1.54667	1.4676	1.6257
1Na ₂ O	42.266	2	.001	1.23443	1.1088	1.3601
2Na ₂ O	15.814	2	.004	.54890	.3996	.6982
3Na ₂ O	30.843	2	.001	.66613	.5732	.7591
1SiO ₂	23.604	2	.002	3.31667	2.7121	3.9213
2SiO ₂	46.119	2	.000	1.09557	.9934	1.1978
3SiO ₂	9.645	2	.011	.58670	.3250	.8484
1Cl	7.947	2	.015	1.53443	.7037	2.3652
2Cl	22.949	2	.002	4.62987	3.7618	5.4979
3Cl	10.001	2	.010	.33337	.1899	.4768
$1Al_2O_3$	8.400	2	.014	.70333	.3431	1.0636
2Al ₂ O ₃	7.264	2	.018	.41667	.1699	.6635
3Al ₂ O ₃	6.103	2	.026	.24447	.0721	.4168
1Fe ₂ O ₃	2.359	2	.142	.22577	1860	.6375
2Fe ₂ O ₃	5.270	2	.034	.03667	.0067	.0666
3Fe ₂ O ₃	6.637	2	.022	.03221	.0113	.0531
1PbO	1.000	2	.423	.00333	0110	.0177
2PbO	12.735	2	.006	.01443	.0096	.0193
3PbO	8.617	2	.013	.01667	.0083	.0250
1TiO ₂	1.853	2	.205	.17110	2261	.5683
2TiO ₂	13.984	2	.005	.41113	.2846	.5376

Original Paper

			One-Samp	le Test		
	t	Df	Sig. (2-	Mean Difference	95% Conf Interval Differe	of the
			tailed)	Difference _	Lower	Upper
15	113.588	2	.000	90.72220	87.2857	94.1587
28	18.061	2	.003	58.11557	44.2704	71.9607
<u></u> 3S	92.152	2	.000	78.72000	75.0445	82.395
1K	60.860	2	.000	1.03737	.9640	1.110
2K	16.594	2	.004	32.62557	24.1662	41.0850
<u>3K</u>	27.458	2	.001	19.09000	16.0986	22.0814
1P	1.928	2	.194	.31110	3833	1.0055
<u></u> 2P	27.110	2	.001	2.81443	2.3677	3.261
<u></u> 3P	38.231	2	.001	1.29333	1.1478	1.438
1Mg	66.622	2	.000	1.02777	.9614	1.094
2Mg	19.681	2	.003	2.55110	1.9934	3.108
3Mg	35.569	2	.001	1.01810	.8949	1.141
1Ca	21.339	2	.002	1.04890	.8374	1.2604
2Ca	25.689	2	.002	1.92997	1.6067	2.2532
3Ca	25.221	2	.002	1.07333	.8902	1.256
1Na	19.388	2	.003	.91557	.7124	1.118
2Na	9.124	2	.012	.35000	.1849	.515
3Na	30.786	2	.001	.51113	.4397	.582
1Si	21.154	2	.002	1.59778	1.2728	1.922
2Si	15.209	2	.004	.42654	.3059	.5472
3Si	6.928	2	.020	.34667	.1314	.5620
1C	26.696	2	.001	1.23447	1.0355	1.4334
2C	23.259	2	.002	5.06547	4.1284	6.002
3C	8.658	2	.013	.26667	.1341	.3992
1Al	12.962	2	.006	.28333	.1893	.3774
2Al	10.425	2	.009	.20890	.1227	.295
3Al	4.006	2	.057	.05890	0044	.1222
1Fe	2.781	2	.109	.02333	0128	.0594
2Fe	5.304	2	.034	.02657	.0050	.048
3Fe	3.394	2	.077	.01888	0051	.0428
3Мо	1.727	2	.226	.03557	0530	.1242
2Pb	6.077	2	.026	.02333	.0068	.0399
3Pb	8.617	2	.013	.01667	.0083	.0250
1Ti	5.511	2	.031	.02443	.0054	.043
2Ti	7.955	2	.015	.01777	.0082	.0274

Table 9: Statistical difference of microelements between the Pun podi prepared in different periods

considered especially from the late inflammation until the mid-proliferation phase of wound healing¹⁶. Further, there are case reports of magnesium sulfate being used on patients with infected war wounds as well as ulcers resulting healing¹⁷.

According to Lansdown 2022¹⁸, recent discoveries revealed the ability of local calcium to modulate cell proliferation, motility/maturation, and the formation of the epidermal lipid barrier function through signal transduction and gene expression. Calcium-contained wound dressing product was widely recognized especially for the management of leg ulcers, pressure sores, and heavily exuding wounds. Further, he stated that sequential events in wound repair require a conducive environment within the wound bed and a balanced pool of metal ions, of calcium, zinc, magnesium, copper, manganese, iron, sodium, and potassium¹⁸. Dalisson and Barralet (2019) found in their study that decrease of calcium concentration diminishes the fibroblast adhesion and proliferation which important in wound healing¹⁷. Several calcium-containing dressings have been identified to facilitate wound healing. Further, Wang et al., 2014¹⁹ stated that calcium-contained dressing material accelerated wound healing compared to Vaseline dressing by promoting the synthesis of collagen type I and wound re-epithelialization, as well as by reducing inflammation. Zhao et al., 2023²⁰ created another calcium-rich dressing substance and applied it to rats' wounds to speed up healing. The dressing's ability to lower inflammation and promote angiogenesis resulted in a quicker healing of the wound²¹. In situ precipitation was utilized by Jeong et al.²² to create calcium fluoride-containing composite hydrogel dressings. They discovered that the calcium fluoride increased fibroblast and endothelial cell migration and reduced bacterial development. The calcium ion has also been demonstrated to work as a key cue, directing the cellular processes of various types of cells during wound healing in addition to being a crucial coagulation factor during hemostasis²¹. The present study showed that the Pun podi prepared in different methods (Table 2 and 4) and seasons (Table 1 and 3) are contained Ca in both elemental and oxide forms; therefore, it was confirmed that the *Pun podi* could be used to treat wounds more effectively.

Okaka et al., $(2001)^{23}$ found in their study that the extracellular calcium concentration played a vital role in blood coagulation and other metabolic and maintenance functions²³. Aspilia africana flowers had wound healing and blood coagulation activity because of the presence of calcium in high concentrations²⁴. The heavy metal analysis of Pun podi showed that all Pun podi had a considerable amount of Ca, and Pun podi 2 had a high amount of Ca compared to other Pun podi (Table 2 to 4). According to the animal study conducted with Pun podi 2, it showed significant wound healing activity. Therefore, the present study findings were in line with Uche Christina et al., $(2017)^{24}$. The *Pun podi*, a traditional Siddha medicine that has been used to treat wounds since ancient times, showed Ca in both oxide and elemental form in considerable amounts.

Mahawatte et al., $(2006)^{25}$ found that K and Ca were included in all the samples prepared in different methods. The present study showed that the highest amount of K was observed in *Pun podi* 2 (32.63% ± 3.57%) while the lowest value was observed in *Pun podi* 1 (1.04% ± 0.05%). Though all *Pun podi* contained the same ingredients, the presence of microelements differed in all *Pun podi* prepared by different methods, which implied there were chemical reactions that happened during the preparation process of medicine. It should be further investigated in the future.

HPTLC is a powerful analysis tool in the field of analysis, which analyze Rf Value. It provides conclusive evidence for the identity of the compound. The Rf value can be used for the identification of the mobile phase or mobile phase ratio changes²⁶. HPTLC results showed (Figure 1, 2) (Table 5), 04 spots in *Pun podi* 2, 2 spots in *Pun podi* 1, and one spot in *Pun podi* 3, at 254 nm. The values obtained from these tests were within the normal range, which indicates that the quality of the product was good because of the presence of several chemical constituents.

Conclusion

The season and method of preparation had an impact on the presence of heavy metals in *Pun podi*

References

- Saini, S., Dhiman, D., & Nanda, S. (2016). Traditional indian medicinal plants with potential wound healing activity: a review. Department of Pharmaceutical Sciences, M.D. University, Rohtak-124001, Haryana, India. *International Journal of Pharmaceutical Sciences and Research*, 7(5), 1809–1819. https://doi.org/10.13040/IJPSR.0975-8232. 7(5).1809-19
- Shah S.A., Sohail M., Khan S (2019). Biopolymerbased biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol. 2019;139:975-993. doi: 10.1016/ j.ijbiomac.2019.08.007
- Karunamoorthi K., Jegajeevanram J., Xavier J., Vijayalakshmi., Melita L. Tamil traditional medicinal system - siddha: an indigenous health practice in the international perspectives, International journal of genuiene traditional medicine, Vol 2(2), 1-11, 2012. doi: http://dx.doi.org/10.5667/tang.2012.0006
- 4. Cleversley K, *DaturaMetel* Indian thorn apple, *entheology.com.* 2002
- Ratsch, A., Steadman K.J., Bogossian, F. The Pituri Story: A Review of the Historical Literature Surrounding Traditional Australian Aboriginal Use of Nicotine in Central Australia. J. Ethnobiol. Ethnomedicine 2010, 6, 1–13.
- Piratheepkumar R., Amal Wageesha N.D., Sivakanesan R, Savariraj Sahayam. (2023). Standadization of Pun podi, a Traditional siddha medicine. Journal of research in Siddha Medicine. Vol6(2), p:68-77. DOI: 10.4103/ jrsm.jrsm_30_23

- Mokhena T., Mochane M., Tshwafo M., Linganiso L., Thekisoe O., Songca S. (2016). We are IntechOpen, the world 's leading publisher of Open Access books Built by scientists for scientists TOP 1 %. *Intech*, 225–240. https:// www.intechopen.com/books/advancedbiometric-technologies/liveness-detection-inbiometrics
- 8. Chrysargyris A., Evangelides E., Tzortzakis N. (2021). Seasonal variation of antioxidant capacity, phenols, minerals and essential oil components of sage, spearmint and sideritis plants grown at different altitudes. *Agronomy*, *11*(9).

https://doi.org/10.3390/agronomy11091766

- Wilkinson H. N., Upson S. E., Banyard K. L., 9. Knight R., Mace K. A., Hardman M. J. (2019). Reduced Iron in Diabetic Wounds: An Oxidative Stress-Dependent Role for STEAP3 Extracellular Matrix Deposition in and Remodeling. Journal of Investigative Dermatology, 139(11), 2368-2377.e7. https:// doi.org/10.1016/j.jid.2019.05.014
- Razic S., Dogo S., Slavkovic L., Popovic A. (2005). Inorganic analysis of herbal drugs. Part I. Metal determination in herbal drugs originating from medicinal plants of the family Lamiacae. *Journal of the Serbian Chemical Society*, 70(11), 1347–1355. https://doi.org/10. 2298/JSC0511347R
- Narayanan V., Rajendran A., Narayanan V., Gnanavel I. (2007). Study on the Analysis of Trace Elements in Aloe vera and Its Biological Importance. *Journal of Applied Sciences Research*, 3(11), 1476–1478. https://www. researchgate.net/publication/265116311
- 12. Kell E. Pretorius. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin (ogen). *Integr Biol (Camb)*,7:24, 52, 2015

- De Britto Pereira C E., Felcman J. (1998). Correlation between five minerals and the healing effect of Brazilian medicinal plants. *Biological Trace Element Research*, 65(3), 251– 259. https://doi.org/10.1007/bf02789100
- Yang F., Xue Y., Wang F., Guo D., He Y., Zhao X., Yan F., Xu Y., Xia D., Liu Y. (2023). Sustained release of magnesium and zinc ions synergistically accelerates wound healing. *Bioactive Materials*, 26(February), 88–101. https://doi.org/10.1016/j.bioactmat.2023.02.019
- Razzaghi R., Pidar F., Momen Heravi M., Bahmani F., Akbari H., Asemi Z. (2018). Magnesium Supplementation and the Effects on Wound Healing and Metabolic Status in Patients with Diabetic Foot Ulcer: a Randomized, Double-Blind, Placebo-Controlled Trial. *Biological Trace Element Research*, 181(2), 207–215. https://doi.org/10.1007/s12011-017-1056-5
- Coger V., Million N., Rehbock C., Sures B., Nachev M., Barcikowski S., Wistuba N., Strau S., Vogt P. M. (2019). Tissue Concentrations of Zinc, Iron, Copper, and Magnesium During the Phases of Full Thickness Wound Healing in a Rodent Model. *Biological Trace Element Research*, 191(1), 167–176. https://doi.org/ 10.1007/s12011-018-1600-y
- Dalisson B., Barralet J. (2019). Bioinorganics and Wound Healing. Advanced Healthcare Materials, 8(18), 1–22. https://doi.org/10. 1002/adhm.201900764
- Lansdown A. B. G. (2002). Calcium: A potential central regulator in wound healing in the skin. *Wound Repair and Regeneration*, 10(5), 271–285. https://doi.org/10.1046/j.1524-475X.2002. 10502.x
- Wannang N. N., Ndukwe H. C., Nnabuife, C. (2009). Evaluation of the analgesic properties of the Datura metel seeds aqueous extract. *Journal of Medicinal Plants Research*, 3(4), 192–195.

- Zhao L., Niu L., Liang H., Tan H., Liu C., Zhu F. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing. ACS Appl. Mater. Interfaces. 2017;9: 37563–37574. doi: 10.1021/acsami.7b09395.
- Subramaniam T., Fauzi M. B., Lokanathan Y., Law J. X. (2021). The role of calcium in wound healing. *International Journal of Molecular Sciences*, 22(12). https://doi.org/10.3390/ ijms 22126486
- 22. Seol-Ha Jeong., Da-Yong Shin., In-Ku Kang., Eun-Ho Song., Yun-Jeong Seong., Ji-Ung Park., Hyoun-Ee Kim. (2018). Effective Wound Healing by Antibacterial and Bioactive Calcium-Fluoride-Containing Composite Hydrogel Dressings Prepared Using in Situ Precipitation. ACS Biomater Sci Eng. 2018 Jul 9;4(7):2380-2389.

Doi: 10.1021/acsbiomaterials.8b00198.

- 23. Okaka A. N. O., Okaka, "Food composition, spoilage and shelf life extension," *Ocjarco Academic Publishers, Enugu, Nig.* pp. 54, 56, 2011
- 24. Uche Christina O., Baxter-Grillo D., Helen N., Okwuonu Uche Christina C., Tracy I. P. (2017).
 Phytochemical, proximate and elemental constituents of Aspilia africana (Wild sunflower) flowers. ~ 22 ~ Journal of Medicinal Plants Studies, 5(4), 22–27.
- 25. Palee Mahawatte., Dissanayaka R.K., (2006)Hewamanna R. Elemental concentrations of some Ayurvedic drugs using dispersive XRF. Journal energy of Radioanalytical and Nuclear Chemistry 270 (3):657-660. DOI: 10.1007/s10967-006-0444-7
- Unhale S. S., Ansar Q. B., Sanap S., Thakhre S., Wadatkar S. (2020). World Journal of Pharmaceutical and Life Sciences, 6(4), 109– 115.